jenkins

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved a Core Infrastructure Initiative (CII) badge.

There is no set of practices that can guarantee that software will never have defects or vulnerabilities; even formal methods can fail if the specifications or assumptions are wrong. Nor is there any set of practices that can guarantee that a project will sustain a healthy and well-functioning development community. However, following best practices can help improve the results of projects. For example, some practices enable multi-person review before release, which can both help find otherwise hard-to-find technical vulnerabilities and help build trust and a desire for repeated interaction among developers from different companies. To earn a badge, all MUST and MUST NOT criteria must be met, all SHOULD criteria must be met OR be unmet with justification, and all SUGGESTED criteria must be met OR unmet (we want them considered at least). If you want to enter justification text as a generic comment, instead of being a rationale that the situation is acceptable, start the text block with '//' followed by a space. Feedback is welcome via the GitHub site as issues or pull requests There is also a mailing list for general discussion.

We gladly provide the information in several locales, however, if there is any conflict or inconsistency between the translations, the English version is the authoritative version.
If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 3538 is passing Here is how to embed it:
You can show your badge status by embedding this in your markdown file:
[![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/3538/badge)](https://bestpractices.coreinfrastructure.org/projects/3538)
or by embedding this in your HTML:
<a href="https://bestpractices.coreinfrastructure.org/projects/3538"><img src="https://bestpractices.coreinfrastructure.org/projects/3538/badge"></a>


These are the Passing level criteria. You can also view the Silver or Gold level criteria.



 Basics 12/12

  • Identification

    Note that other projects may use the same name.

    Jenkins automation server

    What programming language(s) are used to implement the project?
    If there is more than one language, list them as comma-separated values (spaces optional) and sort them from most to least used. If there is a long list, please list at least the first three most common ones. If there is no language (e.g., this is a documentation-only or test-only project), use the single character "-". Please use a conventional capitalization for each language, e.g., "JavaScript".
    The Common Platform Enumeration (CPE) is a structured naming scheme for information technology systems, software, and packages. It is used in a number of systems and databases when reporting vulnerabilities.
  • Basic project website content


    Enough for a badge!

    The project website MUST succinctly describe what the software does (what problem does it solve?). [description_good]
    This MUST be in language that potential users can understand (e.g., it uses minimal jargon).

    Main use-cases are documented on the jenkins.io landing page



    Enough for a badge!

    The project website MUST provide information on how to: obtain, provide feedback (as bug reports or enhancements), and contribute to the software. [interact]

    Jenkins website provides all required information: Downloads, Contribute and Participate. Jenkins issue tracker is also linked from the landing page and from the website footer.



    Enough for a badge!

    The information on how to contribute MUST explain the contribution process (e.g., are pull requests used?) (URL required) [contribution]
    We presume that projects on GitHub use issues and pull requests unless otherwise noted. This information can be short, e.g., stating that the project uses pull requests, an issue tracker, or posts to a mailing list (which one?)

    We have [Contributing Guidelines]https://github.com/jenkinsci/jenkins/blob/master/CONTRIBUTING.md] in the Jenkins core repository. Also, there is documentation for newcomer contributors available on https://jenkins.io/participate/ . For other core components we have an organization-wide contributing page on GitHub which references other resources



    Enough for a badge!

    The information on how to contribute SHOULD include the requirements for acceptable contributions (e.g., a reference to any required coding standard). (URL required) [contribution_requirements]
  • FLOSS license

    What license(s) is the project released under?
    Please use SPDX license expression format; examples include "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "GPL-2.0+", "LGPL-3.0+", "MIT", and "(BSD-2-Clause OR Ruby)". Do not include single quotes or double quotes.



    Enough for a badge!

    The software produced by the project MUST be released as FLOSS. [floss_license]
    FLOSS is software released in a way that meets the Open Source Definition or Free Software Definition. Examples of such licenses include the CC0, MIT, BSD 2-clause, BSD 3-clause revised, Apache 2.0, Lesser GNU General Public License (LGPL), and the GNU General Public License (GPL). For our purposes, this means that the license MUST be: The software MAY also be licensed other ways (e.g., "GPLv2 or proprietary" is acceptable).

    The MIT license is approved by the Open Source Initiative (OSI).



    Enough for a badge!

    It is SUGGESTED that any required license(s) for the software produced by the project be approved by the Open Source Initiative (OSI). [floss_license_osi]
    The OSI uses a rigorous approval process to determine which licenses are OSS.

    The MIT license is approved by the Open Source Initiative (OSI).



    Enough for a badge!

    The project MUST post the license(s) of its results in a standard location in their source repository. (URL required) [license_location]
    E.g., as a top-level file named LICENSE or COPYING. License filenames MAY be followed by an extension such as ".txt" or ".md". Note that this criterion is only a requirement on the source repository. You do NOT need to include the license file when generating something from the source code (such as an executable, package, or container). For example, when generating an R package for the Comprehensive R Archive Network (CRAN), follow standard CRAN practice: if the license is a standard license, use the standard short license specification (to avoid installing yet another copy of the text) and list the LICENSE file in an exclusion file such as .Rbuildignore. Similarly, when creating a Debian package, you may put a link in the copyright file to the license text in /usr/share/common-licenses, and exclude the license file from the created package (e.g., by deleting the file after calling dh_auto_install). We do encourage including machine-readable license information in generated formats where practical.

    Non-trivial license location file in repository: https://github.com/jenkinsci/jenkins/blob/master/LICENSE.txt.


  • Documentation


    Enough for a badge!

    The project MUST provide basic documentation for the software produced by the project. [documentation_basics]
    This documentation must be in some media (such as text or video) that includes: how to install it, how to start it, how to use it (possibly with a tutorial using examples), and how to use it securely (e.g., what to do and what not to do) if that is an appropriate topic for the software. The security documentation need not be long. The project MAY use hypertext links to non-project material as documentation. If the project does not produce software, choose "not applicable" (N/A).

    Enough for a badge!

    The project MUST provide reference documentation that describes the external interface (both input and output) of the software produced by the project. [documentation_interface]
    The documentation of an external interface explains to an end-user or developer how to use it. This would include its application program interface (API) if the software has one. If it is a library, document the major classes/types and methods/functions that can be called. If it is a web application, define its URL interface (often its REST interface). If it is a command-line interface, document the parameters and options it supports. In many cases it's best if most of this documentation is automatically generated, so that this documentation stays synchronized with the software as it changes, but this isn't required. The project MAY use hypertext links to non-project material as documentation. Documentation MAY be automatically generated (where practical this is often the best way to do so). Documentation of a REST interface may be generated using Swagger/OpenAPI. Code interface documentation MAY be generated using tools such as JSDoc (JavaScript), ESDoc (JavaScript), pydoc (Python), devtools (R), pkgdown (R), and Doxygen (many). Merely having comments in implementation code is not sufficient to satisfy this criterion; there needs to be an easy way to see the information without reading through all the source code. If the project does not produce software, choose "not applicable" (N/A).
  • Other


    Enough for a badge!

    The project sites (website, repository, and download URLs) MUST support HTTPS using TLS. [sites_https]
    This requires that the project home page URL and the version control repository URL begin with "https:", not "http:". You can get free certificates from Let's Encrypt. Projects MAY implement this criterion using (for example) GitHub pages, GitLab pages, or SourceForge project pages. If you support HTTP, we urge you to redirect the HTTP traffic to HTTPS.

    Given only https: URLs.



    Enough for a badge!

    The project MUST have one or more mechanisms for discussion (including proposed changes and issues) that are searchable, allow messages and topics to be addressed by URL, enable new people to participate in some of the discussions, and do not require client-side installation of proprietary software. [discussion]
    Examples of acceptable mechanisms include archived mailing list(s), GitHub issue and pull request discussions, Bugzilla, Mantis, and Trac. Asynchronous discussion mechanisms (like IRC) are acceptable if they meet these criteria; make sure there is a URL-addressable archiving mechanism. Proprietary JavaScript, while discouraged, is permitted.

    GitHub supports discussions on issues and pull requests.



    Enough for a badge!

    The project SHOULD provide documentation in English and be able to accept bug reports and comments about code in English. [english]
    English is currently the lingua franca of computer technology; supporting English increases the number of different potential developers and reviewers worldwide. A project can meet this criterion even if its core developers' primary language is not English.

(Advanced) What other users have additional rights to edit this badge entry? Currently: []
Most projects should ignore this field. Project badge entries can always be edited by the badge entry owner (creator), BadgeApp administrators, and anyone who can commit to the GitHub repository (if it's on GitHub). If you want someone else to be able to edit this badge entry, and you already have edit rights to this project badge entry, you can additional users with edit rights. Just enter "+" followed by a comma-separated list of integer user ids. Those users will then also be allowed to edit this project entry. If you're the owner of the badge entry or a BadgeApp administrator, you can remove users from this list by entering "-" followed by a comma-separated list of integer user ids. We expect that normally only one person will edit a particular badge entry at a time. This application uses optimistic locking to prevent saving stale data if multiple users try to edit a badge entry simultaneously. If you have multiple editors, we recommend saving badge entry data incrementally and often (that is a wise practice anyway).



 Change Control 9/9

  • Public version-controlled source repository


    Enough for a badge!

    The project MUST have a version-controlled source repository that is publicly readable and has a URL. [repo_public]
    The URL MAY be the same as the project URL. The project MAY use private (non-public) branches in specific cases while the change is not publicly released (e.g., for fixing a vulnerability before it is revealed to the public).

    Repository on GitHub, which provides public git repositories with URLs.



    Enough for a badge!

    The project's source repository MUST track what changes were made, who made the changes, and when the changes were made. [repo_track]

    Repository on GitHub, which uses git. git can track the changes, who made them, and when they were made.



    Enough for a badge!

    To enable collaborative review, the project's source repository MUST include interim versions for review between releases; it MUST NOT include only final releases. [repo_interim]
    Projects MAY choose to omit specific interim versions from their public source repositories (e.g., ones that fix specific non-public security vulnerabilities, may never be publicly released, or include material that cannot be legally posted and are not in the final release).


    Enough for a badge!

    It is SUGGESTED that common distributed version control software be used (e.g., git) for the project's source repository. [repo_distributed]
    Git is not specifically required and projects can use centralized version control software (such as subversion) with justification.

    Repository on GitHub, which uses git. git is distributed.


  • Unique version numbering


    Enough for a badge!

    The project results MUST have a unique version identifier for each release intended to be used by users. [version_unique]
    This MAY be met in a variety of ways including a commit IDs (such as git commit id or mercurial changeset id) or a version number (including version numbers that use semantic versioning or date-based schemes like YYYYMMDD).


    Barely enough for a badge.

    It is SUGGESTED that the Semantic Versioning (SemVer) format be used for releases. [version_semver]
    Other version numbering schemes, such as commit IDs (such as git commit id or mercurial changeset id) or date-based schemes like YYYYMMDD, MAY be used as version numbers, since they are unique. Some alternatives can cause problems, because users may not be able to easily determine if they are up-to-date. SemVer may be less helpful for identifying software releases if all recipients only run the latest version (e.g., it is the code for a single website or internet service that is constantly updated via continuous delivery).

    Jenkins project uses a scheme close to Semantic versioning for LTS releases: https://jenkins.io/download/lts/ . For weekly releases we use a 2-digit scheme



    Enough for a badge!

    It is SUGGESTED that projects identify each release within their version control system. For example, it is SUGGESTED that those using git identify each release using git tags. [version_tags]
  • Release notes


    Enough for a badge!

    The project MUST provide, in each release, release notes that are a human-readable summary of major changes in that release to help users determine if they should upgrade and what the upgrade impact will be. The release notes MUST NOT be the raw output of a version control log (e.g., the "git log" command results are not release notes). Projects whose results are not intended for reuse in multiple locations (such as the software for a single website or service) AND employ continuous delivery MAY select "N/A". (URL required) [release_notes]
    The release notes MAY be implemented in a variety of ways. Many projects provide them in a file named "NEWS", "CHANGELOG", or "ChangeLog", optionally with extensions such as ".txt", ".md", or ".html". Historically the term "change log" meant a log of every change, but to meet these criteria what is needed is a human-readable summary. The release notes MAY instead be provided by version control system mechanisms such as the GitHub Releases workflow.

    Enough for a badge!

    The release notes MUST identify every publicly known vulnerability with a CVE assignment or similar that is fixed in each new release, unless users typically cannot practically update the software themselves. If there are no release notes or there have been no publicly known vulnerabilities, choose "not applicable" (N/A). [release_notes_vulns]
    If users typically cannot practically update the software themselves on their computers, but must instead depend on a middleman to perform the upgrade (as is often the case for a kernel and low-level software that is intertwined with a kernel), the project may choose "not applicable" (N/A).

    All security releases provide links to Security advisories in the changelog. Example: https://jenkins.io/changelog/#v2.197


 Reporting 8/8

  • Bug-reporting process


    Enough for a badge!

    The project MUST provide a process for users to submit bug reports (e.g., using an issue tracker or a mailing list). (URL required) [report_process]

    Jenkins Issue Tracker: https://issues.jenkins-ci.org/ . Project = JENKINS, component = core , query . Some sub-components like Docker packaging also use GitHub Issues as a second way to report issues: https://github.com/jenkinsci/docker/issues .



    Enough for a badge!

    The project SHOULD use an issue tracker for tracking individual issues. [report_tracker]

    Jenkins Issue Tracker: https://issues.jenkins-ci.org/ . Project = JENKINS, component = core , query . Some sub-components like Docker packaging also use GitHub Issues as a second way to report issues: https://github.com/jenkinsci/docker/issues



    Enough for a badge!

    The project MUST acknowledge a majority of bug reports submitted in the last 2-12 months (inclusive); the response need not include a fix. [report_responses]

    In the Jenkins project we invest in providing better response times in the issue tracker. See the Jenkins issue triage process for information about the current triage process and recommendations.

    As of Jul 21, 2020:

    • 488 defects were reported to the Jenkins core components in the last 12 months
    • 271 defects (55%) have been resolved
    • 186 issues (38%) received an initial response and/or explicit confirmation
    • 31 defects did not get a response

    We plan to introduce a Jenkins Bug Triage team to improve the response times and to ensure that all issues get processed (discussion in the developer mailing list).



    Enough for a badge!

    The project SHOULD respond to a majority (>50%) of enhancement requests in the last 2-12 months (inclusive). [enhancement_responses]
    The response MAY be 'no' or a discussion about its merits. The goal is simply that there be some response to some requests, which indicates that the project is still alive. For purposes of this criterion, projects need not count fake requests (e.g., from spammers or automated systems). If a project is no longer making enhancements, please select "unmet" and include the URL that makes this situation clear to users. If a project tends to be overwhelmed by the number of enhancement requests, please select "unmet" and explain.

    At the moment we do not regular triage of the enhancement requests, but we meet the criteria with the informal process. As of Jul 21, 2020, 203 issues were reported in the last 2-12 months (inclusinve), 105 of them (or 52%) have been already resolved or closed. The majority of other requests submitted users and non-core contributors got initial response. Issue query



    Enough for a badge!

    The project MUST have a publicly available archive for reports and responses for later searching. (URL required) [report_archive]

    Jenkins Issue Tracker: https://issues.jenkins-ci.org/


  • Vulnerability report process


    Enough for a badge!

    The project MUST publish the process for reporting vulnerabilities on the project site. (URL required) [vulnerability_report_process]
    E.g., a clearly designated mailing address on https://PROJECTSITE/security, often in the form security@example.org. This MAY be the same as its bug reporting process. Vulnerability reports MAY always be public, but many projects have a private vulnerability reporting mechanism.

    Enough for a badge!

    If private vulnerability reports are supported, the project MUST include how to send the information in a way that is kept private. (URL required) [vulnerability_report_private]
    Examples include a private defect report submitted on the web using HTTPS (TLS) or an email encrypted using OpenPGP. If vulnerability reports are always public (so there are never private vulnerability reports), choose "not applicable" (N/A).

    Enough for a badge!

    The project's initial response time for any vulnerability report received in the last 6 months MUST be less than or equal to 14 days. [vulnerability_report_response]
    If there have been no vulnerabilities reported in the last 6 months, choose "not applicable" (N/A).

    Vulnerability report are monitored by the Jenkins Security Team. This team monitors all incoming requests which are submitted according to the vulnerability reporting guidelines. For Jenkins core the security team handles the reports on its own, and the response time is usually less than 24 hours.


 Quality 13/13

  • Working build system


    Enough for a badge!

    If the software produced by the project requires building for use, the project MUST provide a working build system that can automatically rebuild the software from source code. [build]
    A build system determines what actions need to occur to rebuild the software (and in what order), and then performs those steps. For example, it can invoke a compiler to compile the source code. If an executable is created from source code, it must be possible to modify the project's source code and then generate an updated executable with those modifications. If the software produced by the project depends on external libraries, the build system does not need to build those external libraries. If there is no need to build anything to use the software after its source code is modified, select "not applicable" (N/A).

    Enough for a badge!

    It is SUGGESTED that common tools be used for building the software. [build_common_tools]
    For example, Maven, Ant, cmake, the autotools, make, rake (Ruby), or devtools (R).

    Enough for a badge!

    The project SHOULD be buildable using only FLOSS tools. [build_floss_tools]

  • Automated test suite


    Enough for a badge!

    The project MUST use at least one automated test suite that is publicly released as FLOSS (this test suite may be maintained as a separate FLOSS project). [test]
    The project MAY use multiple automated test suites (e.g., one that runs quickly, vs. another that is more thorough but requires special equipment). There are many test frameworks and test support systems available, including Selenium (web browser automation), Junit (JVM, Java), RUnit (R), testthat (R).

    Jenkins project includes unit and functional tests inside the main repository. In addition, there is a Jenkins Acceptance Test Harness test suite



    Enough for a badge!

    A test suite SHOULD be invocable in a standard way for that language. [test_invocation]
    For example, "make check", "mvn test", or "rake test" (Ruby).

    Jenkins Core unit and integration test suites can be invoked using the standard Maven Surefire Plugin. JavaScript unit tests can be launched via YARN. See Jenkins Core - Testing Changes for more information.

    Acceptance Test Harness tests can be invoked using the standard Maven Surefire Plugin, the test repository is located in jenkinsci/acceptance-test-harness/



    Enough for a badge!

    It is SUGGESTED that the test suite cover most (or ideally all) the code branches, input fields, and functionality. [test_most]


    Enough for a badge!

    It is SUGGESTED that the project implement continuous integration (where new or changed code is frequently integrated into a central code repository and automated tests are run on the result). [test_continuous_integration]

    We use Jenkins-on-Jenkins: https://ci.jenkins.io/


  • New functionality testing


    Enough for a badge!

    The project MUST have a general policy (formal or not) that as major new functionality is added to the software produced by the project, tests of that functionality should be added to an automated test suite. [test_policy]
    As long as a policy is in place, even by word of mouth, that says developers should add tests to the automated test suite for major new functionality, select "Met."

    Enough for a badge!

    The project MUST have evidence that the test_policy for adding tests has been adhered to in the most recent major changes to the software produced by the project. [tests_are_added]
    Major functionality would typically be mentioned in the release notes. Perfection is not required, merely evidence that tests are typically being added in practice to the automated test suite when new major functionality is added to the software produced by the project.

    See the pull request history. Examples for major improvements



    Enough for a badge!

    It is SUGGESTED that this policy on adding tests (see test_policy) be documented in the instructions for change proposals. [tests_documented_added]
    However, even an informal rule is acceptable as long as the tests are being added in practice.
  • Warning flags


    Enough for a badge!

    The project MUST enable one or more compiler warning flags, a "safe" language mode, or use a separate "linter" tool to look for code quality errors or common simple mistakes, if there is at least one FLOSS tool that can implement this criterion in the selected language. [warnings]
    Examples of compiler warning flags include gcc/clang "-Wall". Examples of a "safe" language mode include JavaScript "use strict" and perl5's "use warnings". A separate "linter" tool is simply a tool that examines the source code to look for code quality errors or common simple mistakes. These are typically enabled within the source code or build instructions.

    Our Jenkins core and library Parent POM includes standard static analysis tools like SpotBugs, Animal Sniffer, Maven Enforcer (for dependency and binary API checks), etc. Same applies to the plugin POM.



    Enough for a badge!

    The project MUST address warnings. [warnings_fixed]
    These are the warnings identified by the implementation of the warnings criterion. The project should fix warnings or mark them in the source code as false positives. Ideally there would be no warnings, but a project MAY accept some warnings (typically less than 1 warning per 100 lines or less than 10 warnings).

    Jenkins core, modules and libraries address all high-severity warnings and acknowledge a number of medium-severity warnings which is within the "1 warning per 100 lines" requirement. There is ongoing project to cleanup the Jenkins core warnings entirely ([JENKINS-36716])(https://issues.jenkins-ci.org/browse/JENKINS-36716).



    Barely enough for a badge.

    It is SUGGESTED that projects be maximally strict with warnings in the software produced by the project, where practical. [warnings_strict]
    Some warnings cannot be effectively enabled on some projects. What is needed is evidence that the project is striving to enable warning flags where it can, so that errors are detected early.

    Jenkins core uses high and medium thresholds for static analysis warnings. ([JENKINS-36716])(https://issues.jenkins-ci.org/browse/JENKINS-36716 intends to implement and maintain higher code quality standards.


 Security 16/16

  • Secure development knowledge


    Enough for a badge!

    The project MUST have at least one primary developer who knows how to design secure software. (See ‘details’ for the exact requirements.) [know_secure_design]
    This requires understanding the following design principles, including the 8 principles from Saltzer and Schroeder:
    • economy of mechanism (keep the design as simple and small as practical, e.g., by adopting sweeping simplifications)
    • fail-safe defaults (access decisions should deny by default, and projects' installation should be secure by default)
    • complete mediation (every access that might be limited must be checked for authority and be non-bypassable)
    • open design (security mechanisms should not depend on attacker ignorance of its design, but instead on more easily protected and changed information like keys and passwords)
    • separation of privilege (ideally, access to important objects should depend on more than one condition, so that defeating one protection system won't enable complete access. E.G., multi-factor authentication, such as requiring both a password and a hardware token, is stronger than single-factor authentication)
    • least privilege (processes should operate with the least privilege necessary)
    • least common mechanism (the design should minimize the mechanisms common to more than one user and depended on by all users, e.g., directories for temporary files)
    • psychological acceptability (the human interface must be designed for ease of use - designing for "least astonishment" can help)
    • limited attack surface (the attack surface - the set of the different points where an attacker can try to enter or extract data - should be limited)
    • input validation with allowlists (inputs should typically be checked to determine if they are valid before they are accepted; this validation should use allowlists (which only accept known-good values), not denylists (which attempt to list known-bad values)).
    A "primary developer" in a project is anyone who is familiar with the project's code base, is comfortable making changes to it, and is acknowledged as such by most other participants in the project. A primary developer would typically make a number of contributions over the past year (via code, documentation, or answering questions). Developers would typically be considered primary developers if they initiated the project (and have not left the project more than three years ago), have the option of receiving information on a private vulnerability reporting channel (if there is one), can accept commits on behalf of the project, or perform final releases of the project software. If there is only one developer, that individual is the primary developer. Many books and courses are available to help you understand how to develop more secure software and discuss design. For example, the Secure Software Development Fundamentals course is a free set of three courses that explain how to develop more secure software.

    The Jenkins project has a Security Team which includes several Jenkins core maintainers with experience working on security issues. Some of these contributors work professionally as security engineers and regularly implement and review software designs to ensure high security standards.



    Enough for a badge!

    At least one of the project's primary developers MUST know of common kinds of errors that lead to vulnerabilities in this kind of software, as well as at least one method to counter or mitigate each of them. [know_common_errors]
    Examples (depending on the type of software) include SQL injection, OS injection, classic buffer overflow, cross-site scripting, missing authentication, and missing authorization. See the CWE/SANS top 25 or OWASP Top 10 for commonly used lists. Many books and courses are available to help you understand how to develop more secure software and discuss common implementation errors that lead to vulnerabilities. For example, the Secure Software Development Fundamentals course is a free set of three courses that explain how to develop more secure software.

    The Jenkins project has a Security Team which includes several Jenkins developers who have experience with working on security issues and provide documentation for other Jenkins developers how to address common vulnerabilities. Jenkins core maintainers and the release team are also represented on the Security team.


  • Use basic good cryptographic practices

    Note that some software does not need to use cryptographic mechanisms.

    Enough for a badge!

    The software produced by the project MUST use, by default, only cryptographic protocols and algorithms that are publicly published and reviewed by experts (if cryptographic protocols and algorithms are used). [crypto_published]
    These cryptographic criteria do not always apply because some software has no need to directly use cryptographic capabilities.

    The Jenkins project uses standard open-source implementations of cryptographic protocols and algorithms (e.g. implemented by JVM, Bouncy Castle, MINA SSH, and other open-source libraries like eddsa for its Ed25519 implementation). There are also standard APIs offered to the plugin developers (e.g. for storing secrets).



    Enough for a badge!

    If the software produced by the project is an application or library, and its primary purpose is not to implement cryptography, then it SHOULD only call on software specifically designed to implement cryptographic functions; it SHOULD NOT re-implement its own. [crypto_call]

    The Jenkins core and its modules do not implement cryptography on their own in recent versions. They depend on open-source libraries which provide cryptography functions. There are historical cryptography APIs offered in Jenkins, but their internal implementations have been replaced by open-source cryptography libraries used in the project.

    Additional notes about previous releases that are no longer supported:

    • Jenkins Remoting layer used to implement encryption on its own in the JNLP3 protocol. This protocol was deprecated in Dec 2017 (Remoting 3.15) and then completely removed from the codebase in Dec 2019 (Remoting 3.40)
    • The Jenkins core used to include cryptography implementations, e.g. a Jenkins-specific fork of the abandoned Trilead SSH library. It was removed from Jenkins 2.186 in July 2019 and is only included as detached plugin for backward compatibility with plugins depending on it, but not used by Jenkins itself.


    Enough for a badge!

    All functionality in the software produced by the project that depends on cryptography MUST be implementable using FLOSS. [crypto_floss]

    Jenkins core is fully FLOSS, as well as its dependencies.



    Enough for a badge!

    The security mechanisms within the software produced by the project MUST use default keylengths that at least meet the NIST minimum requirements through the year 2030 (as stated in 2012). It MUST be possible to configure the software so that smaller keylengths are completely disabled. [crypto_keylength]
    These minimum bitlengths are: symmetric key 112, factoring modulus 2048, discrete logarithm key 224, discrete logarithmic group 2048, elliptic curve 224, and hash 224 (password hashing is not covered by this bitlength, more information on password hashing can be found in the crypto_password_storage criterion). See https://www.keylength.com for a comparison of keylength recommendations from various organizations. The software MAY allow smaller keylengths in some configurations (ideally it would not, since this allows downgrade attacks, but shorter keylengths are sometimes necessary for interoperability).

    The Jenkins core generally does not manage the key lengths in the codebase. We use the default values provided by the recent versions of cryptography libraries. One of the exceptions is a CryptoConfidentialKey used in hudson.util.Secret and a few other locations. These occurrences use AES 128 by default, and it is compliant with the length requirement for symmetric keys.



    Enough for a badge!

    The default security mechanisms within the software produced by the project MUST NOT depend on broken cryptographic algorithms (e.g., MD4, MD5, single DES, RC4, Dual_EC_DRBG), or use cipher modes that are inappropriate to the context, unless they are necessary to implement an interoperable protocol (where the protocol implemented is the most recent version of that standard broadly supported by the network ecosystem, that ecosystem requires the use of such an algorithm or mode, and that ecosystem does not offer any more secure alternative). The documentation MUST describe any relevant security risks and any known mitigations if these broken algorithms or modes are necessary for an interoperable protocol. [crypto_working]
    ECB mode is almost never appropriate because it reveals identical blocks within the ciphertext as demonstrated by the ECB penguin, and CTR mode is often inappropriate because it does not perform authentication and causes duplicates if the input state is repeated. In many cases it's best to choose a block cipher algorithm mode designed to combine secrecy and authentication, e.g., Galois/Counter Mode (GCM) and EAX. Projects MAY allow users to enable broken mechanisms (e.g., during configuration) where necessary for compatibility, but then users know they're doing it.

    We do NOT use broken cryptography algorithms for security mechanisms inside the Jenkins core or modules. In some cases MD5 is used to produce unique keys for Jenkins objects which are not used in a security context. Such objects have soft uniqueness requirements, and potential collisions do not compromise the Jenkins security or sensitive data.



    Enough for a badge!

    The default security mechanisms within the software produced by the project SHOULD NOT depend on cryptographic algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH). [crypto_weaknesses]
    Concerns about CBC mode in SSH are discussed in CERT: SSH CBC vulnerability.

    Jenkins core generally does not rely on SHA-1 for security purposes. The only security-related use of SHA-1 in the Jenkins core is related to the validation of downloaded plugins and Jenkins .war files from update sites. This is only used as a fallback if the update site does not provide SHA-256 or SHA-512 checksums, and a warning is logged. Official Jenkins update sites have provided these better checksums since April 2018, so this only matters for third-party unofficial update sites, and only if downloads are not delivered via HTTPS.

    CBC mode is not used by the Jenkins core, and the algorithm is removed from the SSHD Module which implements the SSH server side logic in Jenkins.

    Note: In some cases we use AES encryption with default settings provided by JVM, without explicit padding and mode specification. This results in ECB usage in some circumstances in the case of the default JVM configuration. ECB is not optimal due to data correlation analysis weakness, but it is not considered as a serious weakness for short data objects. Jenkins users have an option to change the JVM defaults to enforce strong cryptography and other default AES modes.



    Enough for a badge!

    The security mechanisms within the software produced by the project SHOULD implement perfect forward secrecy for key agreement protocols so a session key derived from a set of long-term keys cannot be compromised if one of the long-term keys is compromised in the future. [crypto_pfs]

    In the majority of use-cases we use the default forward secrecy provided by 3rd-party open-source libraries (e.g. for establishing SSH connections). Same for HTTPS, the entire implementation is supplied by external libraries or projects (e.g. Eclipse Jetty bundled in the Jenkins core and used as a default web container).

    The only exception is the Jenkins Remoting library that includes an implementation of the JNLP4-connect protocol for networking between the Jenkins server and agents. This protocol uses the standard TLS encryption layer provided by JVM (default version). As of Jenkins 2.235.1 LTS Jenkins supports Java 8 (TLS 1.2 by default, no TLS 1.3 implementation in OpenJDK) and Java 11 (TLS 1.2 or 1.3 are provided). TLS 1.2 does not enforce perfect forward secrecy by default, but users of Jenkins can enforce TLS 1.3 and forward secrecy with OpenJDK 11 or with other JVMs for Java 8/11. Jenkins admins can also elect to block the JNLP4-connect protocol over TCP, and to use the WebSocket connection over HTTP/HTTPS, in which case the encryption is delegated to the web server and reverse proxies.



    Enough for a badge!

    If the software produced by the project causes the storing of passwords for authentication of external users, the passwords MUST be stored as iterated hashes with a per-user salt by using a key stretching (iterated) algorithm (e.g., Argon2id, Bcrypt, Scrypt, or PBKDF2). See also OWASP Password Storage Cheat Sheet). [crypto_password_storage]
    This criterion applies only when the software is enforcing authentication of users using passwords for external users (aka inbound authentication), such as server-side web applications. It does not apply in cases where the software stores passwords for authenticating into other systems (aka outbound authentication, e.g., the software implements a client for some other system), since at least parts of that software must have often access to the unhashed password.

    In Jenkins we provide a private security realm which stores password hashes in the local filesystem database. This implementation uses BCrypt, and hence it is compatible with the requirements. It is also possible to use external authentication services (e.g. LDAP) which do not store user passwords in Jenkins. Jenkins Security Realm documentation



    Enough for a badge!

    The security mechanisms within the software produced by the project MUST generate all cryptographic keys and nonces using a cryptographically secure random number generator, and MUST NOT do so using generators that are cryptographically insecure. [crypto_random]
    A cryptographically secure random number generator may be a hardware random number generator, or it may be a cryptographically secure pseudo-random number generator (CSPRNG) using an algorithm such as Hash_DRBG, HMAC_DRBG, CTR_DRBG, Yarrow, or Fortuna. Examples of calls to secure random number generators include Java's java.security.SecureRandom and JavaScript's window.crypto.getRandomValues. Examples of calls to insecure random number generators include Java's java.util.Random and JavaScript's Math.random.

    In the Jenkins core and modules we use the standard secure random number generator provided by the JVM. There are no custom implementations within the codebase.


  • Secured delivery against man-in-the-middle (MITM) attacks


    Enough for a badge!

    The project MUST use a delivery mechanism that counters MITM attacks. Using https or ssh+scp is acceptable. [delivery_mitm]
    An even stronger mechanism is releasing the software with digitally signed packages, since that mitigates attacks on the distribution system, but this only works if the users can be confident that the public keys for signatures are correct and if the users will actually check the signature.

    The Jenkins project uses HTTPS for the entire infrastructure and delivery mechanisms with the exception of Update Center Mirrors (tracked as INFRA-266). Mirrors are used to deliver Jenkins core, native packages and plugin binaries.

    • For the Jenkins WAR file distributions, checksums for current releases can be retrieved from the https://jenkins.io/download/ page. Additionally, the war files are signed and can be checked using jarsigner.
    • All official Jenkins native packages and installers are signed by the project, and this signature can be verified upon delivery by using a package manager.
    • To ensure that the delivered plugins are not tampered, the Jenkins project provides SHA-256 checksums which are accessible over HTTPS from the Update Center JSON file which is retrieved over HTTPS in the default configuration. In addition to that, the JSON file itself is signed using SHA-512. Jenkins verifies the checksums upon download of plugins in the update center client logic.

    Jenkins users can also set up a pure HTTPS delivery for all Jenkins artifacts by deploying their own update center by using the update center generator provided by the Jenkins project. This generator downloads all artifacts and metadata from the Jenkins Maven repository over HTTPS.

    In addition to plugins and distributions, Jenkins update sites also list downloadable tools supplied by plugins (e.g. Maven, Gradle, AdoptOpenJDK). These tools are downloaded from external locations which may not implement the secure delivery chain as we depend on other projects serving files securely (tracked as JENKINS-55659). Such tool downloads are opt-in, none of the tools are enabled and installed by default. The Jenkins project does not provide guarantees for external tool downloads.



    Enough for a badge!

    A cryptographic hash (e.g., a sha1sum) MUST NOT be retrieved over http and used without checking for a cryptographic signature. [delivery_unsigned]
    These hashes can be modified in transit.

    Jenkins cryptographic hashes are retrieved over HTTPS from the Jenkins Maven repository. Checksums are also accessible over HTTPS from the Update Center JSON file which is retrieved over HTTPS by default (since 2017) and additionally, a signature for itself in a canonical form is included and verified by Jenkins.


  • Publicly known vulnerabilities fixed


    Enough for a badge!

    There MUST be no unpatched vulnerabilities of medium or higher severity that have been publicly known for more than 60 days. [vulnerabilities_fixed_60_days]
    The vulnerability must be patched and released by the project itself (patches may be developed elsewhere). A vulnerability becomes publicly known (for this purpose) once it has a CVE with publicly released non-paywalled information (reported, for example, in the National Vulnerability Database) or when the project has been informed and the information has been released to the public (possibly by the project). A vulnerability is considered medium or higher severity if its Common Vulnerability Scoring System (CVSS) base qualitative score is medium or higher. In CVSS versions 2.0 through 3.1, this is equivalent to a CVSS score of 4.0 or higher. Projects may use the CVSS score as published in a widely-used vulnerability database (such as the National Vulnerability Database) using the most-recent version of CVSS reported in that database. Projects may instead calculate the severity themselves using the latest version of CVSS at the time of the vulnerability disclosure, if the calculation inputs are publicly revealed once the vulnerability is publicly known. Note: this means that users might be left vulnerable to all attackers worldwide for up to 60 days. This criterion is often much easier to meet than what Google recommends in Rebooting responsible disclosure, because Google recommends that the 60-day period start when the project is notified even if the report is not public. Also note that this badge criterion, like other criteria, applies to the individual project. Some projects are part of larger umbrella organizations or larger projects, possibly in multiple layers, and many projects feed their results to other organizations and projects as part of a potentially-complex supply chain. An individual project often cannot control the rest, but an individual project can work to release a vulnerability patch in a timely way. Therefore, we focus solely on the individual project's response time. Once a patch is available from the individual project, others can determine how to deal with the patch (e.g., they can update to the newer version or they can apply just the patch as a cherry-picked solution).

    There are no such vulnerabilities in the Jenkins Core and modules. While we strive to keep library dependencies updated, some dependencies included in the Jenkins core have known vulnerabilities. In such cases, we determine whether these vulnerabilities are exploitable in Jenkins, and if so, address them. Otherwise we do not consider these to be vulnerabilities in Jenkins.

    There are some unpatched vulnerabilities in plugins as listed in security advisories, but plugins are not in the scope for this certification. In the case of high severity issues the plugins are usually delisted from the Jenkins update centers. In all cases, warnings are presented to administrators of Jenkins instances that have plugins with publicly known vulnerabilities installed.



    Enough for a badge!

    Projects SHOULD fix all critical vulnerabilities rapidly after they are reported. [vulnerabilities_critical_fixed]

    Critical vulnerabilities in the Jenkins core are handled by the Jenkins Security Team. This team reviews all incoming reports and prioritizes and fixes them. Critical vulnerabilities are prioritized as a top priority, and additional subject-matter experts may be involved if needed. For example, in 2015 the Jenkins project was able to analyze and fix the public class deserialization attack disclosure earlier than all other affected projects/vendors. In addition to that, we published a mitigation guide within less than 24 hours after the announcement.


  • Other security issues


    Enough for a badge!

    The public repositories MUST NOT leak a valid private credential (e.g., a working password or private key) that is intended to limit public access. [no_leaked_credentials]
    A project MAY leak "sample" credentials for testing and unimportant databases, as long as they are not intended to limit public access.

    The Jenkins core repository or other public repositories do not include any credentials in plain text.


 Analysis 8/8

  • Static code analysis


    Enough for a badge!

    At least one static code analysis tool (beyond compiler warnings and "safe" language modes) MUST be applied to any proposed major production release of the software before its release, if there is at least one FLOSS tool that implements this criterion in the selected language. [static_analysis]
    A static code analysis tool examines the software code (as source code, intermediate code, or executable) without executing it with specific inputs. For purposes of this criterion, compiler warnings and "safe" language modes do not count as static code analysis tools (these typically avoid deep analysis because speed is vital). Some static analysis tools focus on detecting generic defects, others focus on finding specific kinds of defects (such as vulnerabilities), and some do a combination. Examples of such static code analysis tools include cppcheck (C, C++), clang static analyzer (C, C++), SpotBugs (Java), FindBugs (Java) (including FindSecurityBugs), PMD (Java), Brakeman (Ruby on Rails), lintr (R), goodpractice (R), Coverity Quality Analyzer, SonarQube, Codacy, and HP Enterprise Fortify Static Code Analyzer. Larger lists of tools can be found in places such as the Wikipedia list of tools for static code analysis, OWASP information on static code analysis, NIST list of source code security analyzers, and Wheeler's list of static analysis tools. The SWAMP is a no-cost platform for assessing vulnerabilities in software using a variety of tools. If there are no FLOSS static analysis tools available for the implementation language(s) used, select 'N/A'.

    We use SpotBugs, Animal Sniffer, Maven Enforcer Plugin as a part of the build/release pipelines



    Enough for a badge!

    It is SUGGESTED that at least one of the static analysis tools used for the static_analysis criterion include rules or approaches to look for common vulnerabilities in the analyzed language or environment. [static_analysis_common_vulnerabilities]
    Static analysis tools that are specifically designed to look for common vulnerabilities are more likely to find them. That said, using any static tools will typically help find some problems, so we are suggesting but not requiring this for the 'passing' level badge.

    Jenkins project is being regularly scanned by various static analysis tools, including tools like Snyk or Anchore. GitHub Security is also used for dependency scanning and reporting. Also, Jenkins users regularly run static code analysis tools against the codebase/distributions and then report the results. In addition to that, there is ongoing discussion about including FindSecBugs detectors into standard Pipelines.



    Enough for a badge!

    All medium and higher severity exploitable vulnerabilities discovered with static code analysis MUST be fixed in a timely way after they are confirmed. [static_analysis_fixed]
    A vulnerability is considered medium or higher severity if its Common Vulnerability Scoring System (CVSS) base qualitative score is medium or higher. In CVSS versions 2.0 through 3.1, this is equivalent to a CVSS score of 4.0 or higher. Projects may use the CVSS score as published in a widely-used vulnerability database (such as the National Vulnerability Database) using the most-recent version of CVSS reported in that database. Projects may instead calculate the severity themselves using the latest version of CVSS at the time of the vulnerability disclosure, if the calculation inputs are publicly revealed once the vulnerability is publicly known. Note that criterion vulnerabilities_fixed_60_days requires that all such vulnerabilities be fixed within 60 days of being made public.

    In the Jenkins core there were several security issues reported by dependency scanning tools. They were timely analyzed and fixed if the vulnerability was confirmed. So far we did not get any confirmed medium/high severity vulnerabilities reported by a static code analysis tool.

    Jenkins plugins are not in the scope for this certification



    Enough for a badge!

    It is SUGGESTED that static source code analysis occur on every commit or at least daily. [static_analysis_often]

    We use SpotBugs, Animal Sniffer, Maven Enforcer Plugin as a part of the build/release pipelines


  • Dynamic code analysis


    Barely enough for a badge.

    It is SUGGESTED that at least one dynamic analysis tool be applied to any proposed major production release of the software before its release. [dynamic_analysis]
    A dynamic analysis tool examines the software by executing it with specific inputs. For example, the project MAY use a fuzzing tool (e.g., American Fuzzy Lop) or a web application scanner (e.g., OWASP ZAP or w3af). In some cases the OSS-Fuzz project may be willing to apply fuzz testing to your project. For purposes of this criterion the dynamic analysis tool needs to vary the inputs in some way to look for various kinds of problems or be an automated test suite with at least 80% branch coverage. The Wikipedia page on dynamic analysis and the OWASP page on fuzzing identify some dynamic analysis tools. The analysis tool(s) MAY be focused on looking for security vulnerabilities, but this is not required.

    We do not use dynamic analysis tools as a part of our CI/CD pipeline. Some Jenkins users run scans and sometimes report vulnerabilities to the project, but it is quite rare.



    Enough for a badge!

    It is SUGGESTED that if the software produced by the project includes software written using a memory-unsafe language (e.g., C or C++), then at least one dynamic tool (e.g., a fuzzer or web application scanner) be routinely used in combination with a mechanism to detect memory safety problems such as buffer overwrites. If the project does not produce software written in a memory-unsafe language, choose "not applicable" (N/A). [dynamic_analysis_unsafe]
    Examples of mechanisms to detect memory safety problems include Address Sanitizer (ASAN) (available in GCC and LLVM), Memory Sanitizer, and valgrind. Other potentially-used tools include thread sanitizer and undefined behavior sanitizer. Widespread assertions would also work.

    Jenkins project does not include code written using a memory-unsafe language. We use some 3rd-party dependencies which include native code, e.g. Windows Process Management Library written in C. This library is provided by a third party, and it is not in the scope for this certification.



    Enough for a badge!

    It is SUGGESTED that the software produced by the project include many run-time assertions that are checked during dynamic analysis. [dynamic_analysis_enable_assertions]

    Jenkins project does not use dynamic analysis tools as a part of the CI/CD pipeline. On the other hand, Jenkins instances produce run-time events (logs, metrics, etc.) which are exposed to monitoring tools and can be used for dynamic analysis



    Enough for a badge!

    All medium and higher severity exploitable vulnerabilities discovered with dynamic code analysis MUST be fixed in a timely way after they are confirmed. [dynamic_analysis_fixed]
    If you are not running dynamic code analysis and thus have not found any vulnerabilities in this way, choose "not applicable" (N/A). A vulnerability is considered medium or higher severity if its Common Vulnerability Scoring System (CVSS) base qualitative score is medium or higher. In CVSS versions 2.0 through 3.1, this is equivalent to a CVSS score of 4.0 or higher. Projects may use the CVSS score as published in a widely-used vulnerability database (such as the National Vulnerability Database) using the most-recent version of CVSS reported in that database. Projects may instead calculate the severity themselves using the latest version of CVSS at the time of the vulnerability disclosure, if the calculation inputs are publicly revealed once the vulnerability is publicly known.

    We do not use dynamic analysis tools as a part of our CI/CD pipeline



This data is available under the Creative Commons Attribution version 3.0 or later license (CC-BY-3.0+). All are free to share and adapt the data, but must give appropriate credit. Please credit Oleg Nenashev and the CII Best Practices badge contributors.

Project badge entry owned by: Oleg Nenashev.
Entry created on 2019-12-26 14:21:18 UTC, last updated on 2020-07-22 09:53:41 UTC. Last achieved passing badge on 2020-07-21 12:13:13 UTC.

Back